Jumat, 23 Februari 2018

PEMBENTUKAN DAN REAKTIVITAS SENYAWA ORGANOMETALIK


Pembentukan organometalik

Senyawa organologam adalah senyawa di mana atom-atom karbon dari gugus organik terikat kepada atom logam. Contoh, suatu aloksida seperti (C3H7O)4Ti tidaklah dianggap sebagai suatu senyawa organologam karena gugus organiknya terikat pada Ti melalui oksigen, sedangkan C6H5Ti(OC3H7)3 karena terdapat satu ikatan langsung antara karbon C dari gugus fenil dengan logam Ti.HH Istilah organologam biasanya didefenisikan agak longgar, dan senyawaan dari unsur-unsur seperti Boron, fosfor, dan silikon semuanya mirip logam. Tetapi untuk senyawa yang mengandung ikatan antara atom logam dengan oksigen, belerang, nitrogen, ataupun dengan suatu halogen tidak termasuk sebagai senyawa organologam. Dari bentuk ikatan pada senyawa organologam, senyawa ini dapat dikatakan sebagai jembatan antara kimia organik dan anorganik.
Sifat senyawa organologam yang umum ialah atom karbon yang lebih elektronegatif daripada kebanyakan logamnya. Senyawa komplek logam (biasanya logam-logam transisi) merupakan senyawa yang memiliki satu atau lebih ikatan logam-karbon. Senyawa organologam terdiri dari atom pusat dan ligan (Blaser et al, 2000).
            Terdapat beberapa kecenderungan jenis-jenis ikatan yang terbentuk pada senyawaan organologam:
a.       Senyawaan ionik dari logam elektropositif

Senyawaan organo dari logam yang relatif sangat elektropositif umumnya bersifat ionik, tidak larut dalam pelarut organik, dan sangat reaktif terhadap udara dan air. Senyawa ini terbentuk bila suatu radikal pada logam terikat pada logam dengan keelektropositifan yang sangat tinggi, misalnya logam alkali atau alkali tanah. Kestabilan dan kereaktifan senyawaan ionik ditentukan dalam satu bagian oleh kestabilan ion karbon. Garam logam ion-ion karbon yang kestabilannya diperkuat oleh delokalisasi elektron lebih stabil walaupun masih relatif reaktif. Adapun contoh gugus organik dalam garam-garaman tersebut seperti (C6H5)3C-Na+ dan (C5H5)2Ca2+.
b.      Senyawaan yang memiliki ikatan -σ (sigma)
Senyawaan organologam  dimana sisa organiknya terikat pada suatu atom logam dengan suatu ikatan yang digolongkan sebagai ikatan kovalen (walaupun masih ada karakter-karakter ionik dari senyawaan ini) yang dibentuk oleh kebanyakan logam dengan keelektropositifan yang relatif lebih rendah dari golongan pertama di atas, dan sehubungan dengan beberapa faktor berikut:
1.      Kemungkinan penggunaan orbital d yang lebih tinggi, seperti pada SiR4 yang tidak tampak dalam CR4.
2.      Kemampuan donor alkil atau aril dengan pasangan elektron menyendiri.
3.      Keasaman Lewis sehubungan dengan kulit valensi yang tidak penuh seperti ada BR2 atau koordinasi tak jenuh seperti ZnR2.
4.      Pengaruh perbedaan keelektronegatifan antara ikatan logam-karbon (M-C) atau karbon-karbon (C-C).
c.       Senyawaan yang terikat secara nonklasik
Dalam banyak senyawaan organologam terdapat suatu jenis ikatan logam pada karbon yang tidak dapat dijelaskan dalam bentuk ionik atau pasangan elektron/kovalensi. Misalnya, salah satu kelas alkil terdiri dari Li, Be, dan Al yang memiliki gugus-gugus alkil berjembatan. Dalam hal ini, terdapat atom yang memiliki sifat kekurangan elektron seperti atom Boron pada B(CH3)3. Atom B termasuk atom golongan IIIA, dimana memiliki 3 elektron valensi, sehingga cukup sulit untuk membentuk konfigurasi oktet dalam senyawaannya.
2.2 Konsep dasar Organologam dan Reaksi-reaksi Pembentukan Organologam
            Pada dasarnya Organologam prinsipnya yaitu atom-atom Karbon dari gugus organik terikat kepada atom logam. Konsep ini yang mendasari Organologam, sehingga banyak cara untuk menghasilkan ikatan-ikatan logam pada Carbon yang berguna bagi kedua logam transisi dan non-transisi. Beberapa yang lebih penting adalah sebagai berikut:
1.      Reaksi Logam langsung ; sintesis yang paling awal oleh ahli kimia Inggris, Frankland  dalam tahun 1845 adalah interaksi antara Zn dan suatu alkil Halida. Adapun yang lebih berguna adalah penemuan ahli kimia Perancis, Grignard yang dikenal sebagai pereaksi Grignard. Contohnya interaksi Magnesium dan alkil atau aril Halida dalam eter:
Mg + CH3I → CH3MgI
Interaksi langsung alkil atau aril Halida juga terjadi dengan Li, Na, K, Ca, Zn dan Cd.
2.      Penggunaan zat pengalkilasi. Senyawa ini dimanfaatkan untuk membuat senyawa organologam lainnya. Kebanyakan Halida nonlogam dan logam atau turunan Halida dapat dialkilasi dalam eter atau pelarut hidrokarbon, misalnya :
PCl3 + 3C6H5MgCl  → P(C6H5)3 + 3MgCl2
VOCl3 + 3(CH3)3SiCH2MgCl → VO(CH2SiMe3)3+ 3MgCl2
3.      Interaksi Hidrida Logam atau nonlogam dengan alkena atau alkuna.
4.      Reaksi Oksidatif adisi. Reaksi yang dikenal sebagai reaksi Oksa dimana Alkil atau Aril Halida ditambahkan pada senyawa logam transisi Koordinasi tidak jenuh menghasilkan ikatan logam Karbon. Contohnya:
RhCl(PPh3)3 + CH3I → RhClI(CH3)(PPh3)2 + PPh3
5.      Reaksi Insersi yaitu reaksi yang menghasilkan ikatan-ikatan dengan Karbon, sebagai contoh:
SbCl5 + 2HC CH→Cl3Sb(CH=CHCl)2
Atom pusat dari suatu senyawa kompleks yang digunakan antara lain logam-logam transisi deret pertama seperti: Cr, Mn, Fe, Co, Ni, Cu, dan Zn (HIjazi et al, 2008). Ligan dari suatu senyawa komplek dapat mempengaruhi bentuk geometri dari senyawa organologam itu sendiri sehingga dapat dimanfaatkan dalam berbagai reaksi kimia. Tabel 1 menjelaskan tentang perbedaan jenis ligan yang terikat pada atom pusat, dimana memberikan bentuk geometri yang berbeda dan perbedaan reaksi yang mampu dikatalisisnya.
Reaksi Grignard
Reaksi Grignard adalah reaksi kimia organologam di mana alkil - atau Aril-magnesium halides (reagen Grignard) menambah gugus karbonil Aldehida atau keton. Reaksi ini adalah alat penting untuk pembentukan ikatan antar karbon. Reaksi Halida organik dengan magnesium bukan reaksi Grignard, tetapi menyediakan peraksi Grignard. Pereaksi Grignard memiliki rumus umum RMgX dimana X adalah sebuah halogen, dan R adalah sebuah gugus alkil atau aril (berdasarkan pada sebuah cincin benzen). Pereaksi Grignard sederhana bisa berupa CH3CH2MgBr.
MEKANISME REAKSI
 Reagen Grignard berfungsi sebagai nukleofil, menyerang atom karbon elektrofilik yang hadir dalam ikatan polar gugus karbonil. Penambahan pereaksi Grignard untuk karbonil biasanya hasil melalui keadaan transisi enam-beranggota cincin.
Mekanisme dari reaksi Grignard:
Namun, dengan pereaksi Grignard terhalang, reaksi dapat melanjutkan dengan transfer elektron tunggal. Jalur serupa diasumsikan untuk reaksi lain dari reagen Grignard, misalnya, dalam pembentukan ikatan antara karbon-fosfor, timah-karbon, karbon-silikon, boron-karbon dan karbon-heteroatom.

REAKSI-REAKSI DARI PEREAKSI GRIGNARD
Reaksi pereaksi Grignard dengan senyawa-senyawa karbonil
Reaksi antara berbagai macam senyawa karbonil dengan pereaksi Grignard bisa terlihat sedikit rumit, walaupun pada kenyataannya semua senyawa karbonil bereaksi dengan cara yang sama – yang berbeda hanyalah gugus-gugus yang terikat pada ikatan rangkap C=O.
Apa yang terjadi pada reaksi ini jauh lebih mudah dipahami dengan mencermati persamaan umumnya (menggunakan gugus "R" bukan gugus tertentu) – setelah anda memahami dengan gugus R barulah bisa diganti dengan gugus yang sesungguhnya jika diperlukan.
Reaksi-reaksi yang terjadi pada dasarnya sama untuk reaksi dengan karbon dioksida – yang membedakan hanya sifat-sifat produk organiknya.
Pada tahap pertama, pereaksi Grignard diadisi ke ikatan rangkap C=O:
Asam encer selanjutnya ditambahkan untuk menghidrolisisnya. (Pada persamaan berikut digunakan persamaan umum dengan tidak mempertimbangkan fakta bahwa Mg(OH)Br akan bereaksi lebih lanjut dengan asam yang ditambahkan).
Alkohol terbentuk. Salah satu kegunaan penting dari pereaksi Grignard adalah kemampuannya untuk membuat alkohol-alkohol kompleks dengan mudah. Jenis alkohol yang dihasilkan tergantung pada senyawa karbonil yang digunakan – dengan kata lain, gugus R dan R’ yang dimiliki.

PERMASALAHAN:1. Jelaskan bagaimana kah prinsip dasar dari organologam itu sendiri?2. Mekanisme reaksi dari penyisipan karbonil terdiri dari 3 yaitu penyisipan secara langsung, migrasi karbonil, dan migrasi alkil. Jelaskan perbedaan yang spesifik dari ketiga mekanisme reaksi penyisipan karbonik tersebut!3. Jelaskan reaksi oksidasi dari pereaksi gridnard!

Kamis, 15 Februari 2018

MEKANISME REAKSI ADISI ELEKTROFILIK PADA SENYAWA ORGANIK TIDAK JENUH


A. Pengertian Reaksi Adisi
Adisi artinya penambahan atau penangkapan. Dalam reaksi adisi, suatu zat ditambahkan ke dalam senyawa C yang mempunyai ikatan rangkap, sehingga ikatan rangkap itu berubah menjadi ikatan tunggal. Reaksi adisi antara lain dapat digunakan untuk membedakan alkana dengan alkena. Reaksi pengenalan ini dilakukan dengan menambahkan bromin (Br2) yang berwarna merah cokelat. Terjadinya reaksi adisi ditandai dengan hilangnya warna merah cokelat dari bromin. Karena alkana tidak memiliki ikatan rangkap (tidak mengalami reaksi adisi) warna merah dari bromin tidak berubah.
Contoh reaksi adisi adalah reaksi antara etena dengan gas klorin membentuk 1,2-dikloroetana :
B. Jenis-Jenis Reaksi Adisi

Reaksi adisi dibedakan atas (a) reaksi adisi elektrofilik dan (b) reaksi adisi nukleofilik.
Reaksi Adisi Elektrofilik
Reaksi adisi elektrofilik terjadi apabila gugus yang pertama menyerang suatu ikatan rangkap pereaksi elektrofil. Reaksi adisi elektrofilik ditemukan pada senyawa C yang mengandung ikatan rangkap antara dua atom C seperti alkena dan alkuna. Contoh reaksi adisi elektrofilik adalah reaksi antara etena dengan asam klorida menghasilkan etil-klorida

Reaksi Adisi Nukleofilik

Reaksi adisi nukleofilik terjadi apabila gugus yang pertama kali menyerang suatu ikatan rangkap merupakan pereaksi nukleofil. Reaksi adisi nukleofilik ditemukan pada senyawa C yang mengandung ikatan rangkap antara dua atom C dengan atom lain, seperti senyawa yang mengandung gugus karbonil dan senyawa yang mempunyai gugus sianida. Contoh reaksi adisi nukleofilik adalar reaksi antara dimetil-keton dengan asam sianida menghasilkan 2-siano-2-propanol.

Orientasi Adisi Elektrofilik: Aturan Markovnikov

Coba kita lihat lagi reaksi antara 2-metilpropena dengan HBr. Semestinya akan terbentuk dua produk dari reaksi adisi yang berlangsung, yaitu 1-bromo-2-metilpropana dan 2-bromo-2- metilpropana. Pada kenyataannya tidaklah demikian, yang terbentuk hanya 2-bromo-2-metilpropana. Bagaimanakah hal ini dapat terjadi?
Seorang ahli kimia Rusia, Vladimir Markovnikov, pada tahun 1969 mengusulkan suatu aturan yang kemudian dikenal dengan aturan Markovnikov, yaitu: Pada reaksi adisi HX pada alkena, hidrogen menyerangkarbon yang kurang tersubstitusi, sedangkan X menyerang karbon yang lebih tersubstitusi. 
Ketika terdapat alkena di mana karbon-karbon yang memiliki ikatan rangkap mempunyai substituen dengan derajat yang sama maka terbentuk produk campuran.
Oleh karena karbokation terlibat sebagai intermediet dalam reaksi ini maka aturan Markovnikov dapat diulangi: Dalam reaksi adisi HX pada alkena, karbokation yang lebih tersubstitusi akan terbentuk sebagai intermediet dari pada yang karbokation yang kurang tersubstitusi.
Halida asam (HX) dapat juga mengadisi alkena dengan mekanisme yang mirip seperti di atas. Umumnya reaksinya menghasilkan produk adisi Markovnikov. Misalnya adisi HBr pada alkena, di mana Br akan mengadisi pada atom karbon yang lebih tersubstitusi (aturan Markovnikov). Akan tetapi jika terdapat O2 atau perksida (ROOR), adisi HBr berjalan dengan mekanisme radikal bebas, bukan dengan mekanisme ion.

PERMASALAHAN:
1. berdasarkan data diatas kenapa Reaksi adisi dapat digunakan untuk membedakan alkana dengan alkena ?
2. aturan markovnikov mengatakan “pada adisi heterolitik dasi sebuah molekul polar pada alkena atau alkuna, atom yang mempunyai keelektronegatifan yang besar, maka akan terikat pada atom karbon yang mengikat atom hydrogen yang lebih sedikit” apa yang dimaksud dengan adisi heterolitik?
3. mengapa senyawa benzena sukar/tidak dapat untuk diadisi? Jelaskan!
4. Reaksi elektrofilik terjadi antara etena dan asam klorida menghasilkan etil klorida, dari contoh yg saya berikan sebutkan 3contoh lain dari reaksi tersebut!

Sabtu, 10 Februari 2018

CONTOH REAKSI SUBSTITUSI NUKLEOFILIK PADA ALKIL HALIDA

Pada pembahasan blog saya kali ini, saya akan memberikan satu contoh reaksi substitusi nukleofilik pada alkil halida. Sebelum masuk ke contoh akan di bahas apa itu reaksi substitusi nukleofilik dan apa itu alkil halida.
Alkil Halida adalah senyawa-senyawa yang mengandung halogen yang terikat pada atom karbon jenuh (atom karbon yang terhibridisasi sp3)
Tata Nama:
1. perpanjangan langsung dari aturan tata nama alkana
2. halogen sebagai substituen pada rantai induk
Reaksi antara alkil halida dengan suatu nukleofil

  • reaksi susbstitusi nukleofilik terjadi melalui 2 mekanisme SN2 dan SN1 
  • rekasi eliminasi juga dapat terjadi melalui 2 mekanisme E2 dan E1
Reaksi SN2 (reaksi substitusi nukleofilik bimomolekuler)
Bimomolekuler, berarti 2 molekul (nukleofil dan alkil halida) keduanya terlibat dalam suatu step (tahap) penentu laju reaksi. Mengikuti kinetika orde reaksi kedua 
Laju Reaksi = K [RX]
Ciri-Ciri Reaksi:
  • serangan nukleofil dari arah "belakang"
  • reaksi berjalan satu step, tanpa intermediate
  • terjadi inversi konfigurasi (inversi Walden) 

Pada reaksi susbstitusi nukleofilik atom/gugus yang diganti mempunyai elektronegativitas lebih besar dari atom C, dan atom/gugus pengganti adalah suatu nukleofil, baik nukleofil netral atau nukleofil yang bermuatan negatif.

Satu Contoh Reaksi substitusi nukleofilik pada alkil halida:
GAMBAR 1

GAMBAR 2
(Gambar2 diatas menunjukkan contoh reaksi susbstitusi nukleofilik alkil halida dengan mekanisme SN2) 
PERMASALAHAN:
1. sebutkan apa-apa saja faktor yang mengatur reaksi susbstitusi?
2. bagaimana perbandingan mekanisme susbstitusi SN1 dan SN2 dengan keadaan-keadaan lain, seperti keadaan pelarut, struktur, dan nukleofil secara spesifik?
3. menurut gamabr 1 diatas jelaskan apakah alkil halida pada reaksi susbstitusi harus berada pada atom kiral atau bisa saja pada atom-atom yang lain? 











Jumat, 02 Februari 2018

MEKANISME TERJADINYA ELIMINASI PADA ALKIL HALIDA DAN ALKOHOL

Reaksi Eliminasi adalah suatu reaksi dimana bagian suatu molekul lepass dari atom yang mengikatnya sehingga terbentuk ikatan rangkap.reaksi eliminasi merupkan suatu jenis reaksi organik dimana dua subtituen dilepaskan dari sebuah molekul baik dalam satu langkah atau dua langkah dimana reaksi satu langkah yaitu E2 dan reaksi dua langkah dikenal dengan E1. yang dapat dijelaskan dari gambar dibawah ini :
A. REAKSI ALKIL HALIDA 
Alkil halida paling banyak ditemui sebagai zat antara dalam sintesis. Mereka dengan mudah diubah ke dalam berbagai jenis senyawa lain, dan dapat diperoleh melalui banyak cara. Reaksi alkil halida yang banyak itu dapat dikelompokkan dalam dua kelompok, yaitu reaksi substitusi dan reaksi eliminasi. Dalam reaksi substitusi, halogen (X) diganti dengan beberapa gugus lain (Z).
Reaksi eliminasi melibatkan pelepasan HX, dan hasilnya adalah suatu alkena. Banyak sekali modifikasi terhadap reaksi ini, tergantung pada pereaksi yang digunakan.
          Kepolaran suatu pelarut itu disebabkan oleh atom C primer, sekunder dan tersier (1ᵒ, 2ᵒ, 3ᵒ). Kepolarannya semakin kekanan semakin polar. Hal ini berarti atom C primer merupakan nonpolar sedangkan atom C tersier merupakan polar. Makin kompleks suatu senyawa maka akan semakin tidak polar. Keceapatan reaksi antara SN1 dan SN2 akan dijelaskan berdasarkan gambar dibawah ini:

Pada gambar ditunjukkan bahwa reaksi SN2 memiliki ∆G yang lebih rendah dari pada reaksi SN1. Hal ini menyebabkan reaksi SN2 lebih cepat dari pada reaksi SN1. Reaksi SN2 lebih cepat daripada reaksi SN1 dikarenakan dua reaktan dan substrat saling bertumbukan yang menyebabkan energi aktivasi pada reaksi SN1 yang tinggi dan halangan steriknya rendah. Persamaan laju reaksinya sebagai berikut :
R= k [R][s]
    Pada reaksi SN1 berjalan lambat karena tumbukan yang terjadi tidak sempurna dan mempunyai halangan sterik yang besar serta nukleofil baru mulai mengikat reaktan. Persamaan laju reaksinya dapat ditulis sebagai berikut:
R = k [s]
 B. REAKSI ELIMINASI
            Reaksi eliminasi adalah suatu jenis reaksi organik dimana dua substituen dilepaskan dari sebuah molekul baik dalam satu atau dua langkah mekanisme. Reaksi satu langkah disebut dengan reaksi E2, sedangkan reaksi dua langkah disebut dengan reaksi E1. Simbol angka pada huruf E (yang berarti elimination) tidak melambangkan jumlah langkah. E2 dan E1 menyatakan kinetika reaksi yaitu berturut-turut bimolekuler dan unimolekuler.
            Pada sebagian besar reaksi eliminasi organik, minimal satu hidrogen dilepaskan membentuk ikatan rangka dua. Dengan kata lain akan terbentuk molekul tak jenuh. Hal tersebut memungkinkan bahwa sebuah molekul melangsungkan reaksi eliminasi reduktif, dimana valensi atom pada molekul menurun dua. Jenis reaksi eliminasi yang penting melibatkan alkil halida, dengan gugus pergi (leavig group) yang baik, bereaksi dengan basa lewis membentuk alkena. Contoh reaksi eliminasi :
Reaksi eliminasi adalah kebalikan dari reaksi adisi. Ketika senyawa yang tereliminasi asimetris, maka regioselektivitas ditemukan oleh aturan Zaitsev.
Reaksi Eliminasi: Mekanisme E2 dan E1
Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.
Pada reaksi substitusi, nukleofil menggantikan halogen (lihat pers. 5.5). Pada reaksi eliminasi (pers. 5.6), halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan ) terbentuk di antara karbon karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.
 1. Mekanisme reaksi E1
         Mekanisme reaksi E1 merupakan alternatif dari mekanisme reaksi SN1. Karbokation dapat memberikan sebuah proton kepada suatu basa dalam reaksi eliminasi.
Mekanisme reaksi E1 terdiri dari dua tahap. Perhatikan contoh berikut ini.
Tahap 1 reaksi E1 berjalan lambat.
  2. Mekanisme reaksi E2
E2 merupakan reaksi eliminasi bimolekuler. Reaksi E2 hanya terjadi dari satu langkah atau hanya terjadi proses satu tahap dimana ikatan karbon-hidrogen dan karbon-halogen terputus membentuk ikatan rangkap C=C. Reaksi E2 dilangsungkan oleh alkil halida primer dan sekunder. Reaksi ini hampir sama dengan reaksi SN2. Reaksi E2 secara khusus menggunakan basa kuat untuk menarik hidrogen asam dengan kuat. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi. Pada waktu yang bersamaan, gugus pergi terlepas dan ikatan rangkap dua terbentuk.
Konfigurasi yang terbaik untuk reaksi E2 adalah konfigurasi dimana hidrogen yang akan tereliminasi dalam posisi anti dengan gugus pergi. Alasannya ialah bahwa pada posisi tersebut orbital ikatan C-H dan C-X tersusun sempurna yang memudahkan pertumpang tindihan orbital dalam pembentukan ikatan  baru.
Reaksi E2 menggunakan basa kuat seperti OH, -OR, dan juga membutuhkan kalor, dengn memanaskan alkil halida dalam KOH atau CH3CH2ONa dalam etanol.
C. REAKSI ELIMINASI PADA ALKOHOL
Eliminasi adalah reaksi pembentukan ikatan rangkap dari ikatan tunggal. Alkohol yang mengalami reaksi eliminasi akan menghasilkan alkena. Saat ditambahkan air brom, larutan tetap berwarna bening. Hal ini menandakan terbentuknya ikatan rangkap. Jika ditambahkan air brom terus menerus, maka larutan akan menjadi jenuh. Sehingga larutan berubah menjadi kemerahan, karena air brom akan memutuskan ikatan rangkap dan bereaksi dengan sesamanya. Dalam percobaan ini H2SO4berfungsi sebagai katalisator dan oksidator. Saat terjadi reaksi eliminasi gugus -OH akan putus dan membentuk air. Berikut mekanisme reaksinya :
CH3 – CH2 – OH   →   CH2 = CH2 + H2O

PERMASALAHAN:
1.   mengapa reaksi E2 secara khusus menggunakan basa kuat untuk menarik hydrogen asam?
2.    mengapa pada reaksi E1 basa kuat tidak diperlukan ?
3. apa saja kemiripan antara reaksi E1 dan E2, sebutkan saja!

PERSENTASE TUGAS HASIL ANALISIS PEMBENTUKAN STRUKTUR SEKUNDER DAN TERSIER PADA PROTEIN

Protein merupakan  sekumpulan dari asam amino (Total 20 macam) yang bergabung dan berikatan untuk membentuk suatu fungsi dan bentuk terten...